

ATLAS

e and  $\gamma$ 

Data Analysi
Event Selection

Kinematic Distributions Signal Yield

Cross Sections

Canalusia

Backur

# Measurement of $W\gamma$ and $Z\gamma$ Production in pp Collisions at $\sqrt{s}=7$ TeV with the ATLAS Detector

ANDREA BOCCI
On behalf of the ATLAS Collaboration

Duke University





DIS 2011, April 14th, 2011



ATLAS

e and  $\gamma$ 

 $\gamma$  Isolatio

Event Selection
Kinematic
Distributions

Cross Sections

Results

Conclusion

Backup

### Outline

- Introduction
  - Signal Definition
- ATLAS Detector
  - ullet e and  $\gamma$  ID
  - ullet  $\gamma$  Isolation
- Oata Analysis
  - Event Selection
  - Kinematic Distributions
  - Signal Yield
- Cross Sections
  - Calculation
  - Results
- Conclusions
- 6 Backup



Definitio

\_\_\_\_\_

e and  $\gamma$  I

 $\gamma$  Isolatio

### Data Analysis Event Selection

Kinematic Distributions Signal Yield

Cross Sections

alculation

Conclusion

Backup

### Introduction

The  $W\gamma$  and  $Z\gamma$  productions are direct test of the non-Abelian nature of the Electroweak theory



Definiti

### ATLAS

e and  $\gamma$  I

### Data Analys

Event Selection
Kinematic
Distributions
Signal Yield

### Cross Sections

Sections Calculation Results

Conclusion

Backup

### Introduction

The  $W\gamma$  and  $Z\gamma$  productions are direct test of the non-Abelian nature of the Electroweak theory

ullet Probing the  $WW\gamma$  triple gauge boson coupling (TGC)





Definitio

Detecto

e and  $\gamma$  II  $\gamma$  Isolation

Data Analysis

Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections

Conclusion

Backur

### Introduction

The  $W\gamma$  and  $Z\gamma$  productions are direct test of the non-Abelian nature of the Electroweak theory

- $\bullet$  Probing the  $WW\gamma$  triple gauge boson coupling (TGC)
- $\bullet$  Probing the presence of  $ZZ\gamma$  and  $Z\gamma\gamma$  TGC forbidden (at the tree level) in the Standard Model





Definitio

ATLAS Detecto

e and  $\gamma$  II  $\gamma$  Isolation

Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backup

### Introduction

The  $W\gamma$  and  $Z\gamma$  productions are direct test of the non-Abelian nature of the Electroweak theory

- ullet Probing the  $WW\gamma$  triple gauge boson coupling (TGC)
- $\bullet$  Probing the presence of  $ZZ\gamma$  and  $Z\gamma\gamma$  TGC forbidden (at the tree level) in the Standard Model
- Highest cross sections among all diboson processes





Signal

Detector

Data Analysis
Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backun

### Introduction

The  $W\gamma$  and  $Z\gamma$  productions are direct test of the non-Abelian nature of the Electroweak theory

- ullet Probing the  $WW\gamma$  triple gauge boson coupling (TGC)
- $\bullet$  Probing the presence of  $ZZ\gamma$  and  $Z\gamma\gamma$  TGC forbidden (at the tree level) in the Standard Model
- Highest cross sections among all diboson processes
- Amplitude interferences between u- and t-channel suppresses the  $W\gamma$  production w.r.t.  $Z\gamma$  production

# $WW\gamma$ TGC





Signal Definition

e and  $\gamma$  II

Data Analysi
Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backup

# Signal Definition: $l\nu\gamma$ and $ll\gamma$ final states

The experimental signature of these processes are the  $l\nu\gamma+X$  and  $ll\gamma+X$  final states.

# $WW\gamma$ TGC



### ISR Production (u- and t-channel)





Definition

e and  $\gamma$  I

Data Analysi
Event Selection
Kinematic

Cross Sections

Conclusion

Backun

# Signal Definition: $l\nu\gamma$ and $ll\gamma$ final states

The experimental signature of these processes are the  $l\nu\gamma+{\sf X}$  and  $ll\gamma+{\sf X}$  final states.

Besides the TGC and ISR contributions they include also:







Definition

### Detector

 $\epsilon$  and  $\gamma$  I

### Data Analysi

Event Selection
Kinematic
Distributions
Signal Yield

### Cross Sections

Calculation Results

Conclusion

Backup

# Signal Definition: $l\nu\gamma$ and $ll\gamma$ final states

The experimental signature of these processes are the  $l\nu\gamma+{\rm X}$  and  $ll\gamma+{\rm X}$  final states.

Besides the TGC and ISR contributions they include also:

- QED FSR from W(Z) inclusive production
  - Dominating for  $E_T^\gamma \lesssim$  40 GeV





Definition ATLAS

e and  $\gamma$  II  $\gamma$  Isolation

Data Analysis

Event Selection

Kinematic

Distributions

Signal Violation

Cross Sections Calculation

Conclusion

Backup

# Signal Definition: $l\nu\gamma$ and $ll\gamma$ final states

The experimental signature of these processes are the  $l\nu\gamma+{\rm X}$  and  $ll\gamma+{\rm X}$  final states.

Besides the TGC and ISR contributions they include also:

- QED FSR from W(Z) inclusive production
  - Dominating for  $E_T^\gamma \lesssim$  40 GeV
- High order  $\mathcal{O}(\alpha\alpha_S)$  contributions (NLO corrections)





Detector

e and  $\gamma$  II  $\gamma$  Isolation

Data Analysis
Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections Calculatio

Conclusion

Backun

# Signal Definition: $l\nu\gamma$ and $ll\gamma$ final states

The experimental signature of these processes are the  $l\nu\gamma+{\sf X}$  and  $ll\gamma+{\sf X}$  final states.

Besides the TGC and ISR contributions they include also:

- QED FSR from W(Z) inclusive production
  - Dominating for  $E_T^\gamma \lesssim$  40 GeV
- High order  $\mathcal{O}(\alpha \alpha_S)$  contributions (NLO corrections)
- Photons from fragmentation of jets produced in association with a W or a Z boson (W(Z)+jet events)

### **QED FSR**







 $\gamma$  Isolation

Data Analysis

Event Selection

Kinematic

Distributions

Signal Violation

Cross Sections Calculatio

Conclusion

Backup

# Fragmentation Photon Contribution

Photons from fragmentation of jets produced in association with a W or a Z boson (W(Z)+jet events)





e and  $\gamma$  II

Data Analysi Event Selectio Kinematic Distributions

Cross Sections Calculation

Conclusion

Backup

# Fragmentation Photon Contribution

Photons from fragmentation of jets produced in association with a W or a Z boson  $(W(Z)+{\rm jet}\ {\rm events})$ 

 Only the sum of the prompt and fragmentation components is physically well defined ⇒ Part of the signal





e and  $\gamma$   $\Pi$ 

Data Analysi Event Selectio Kinematic

Cross Sections Calculatio

Conclusion

Backup

# Fragmentation Photon Contribution

Photons from fragmentation of jets produced in association with a W or a Z boson  $(W(Z)+{\rm jet}\ {\rm events})$ 

- Only the sum of the prompt and fragmentation components is physically well defined ⇒ Part of the signal
- Strongly suppressed by the photon identification and isolation requirements, but still significantly contributing





ATLAS Detector

e and  $\gamma$  I  $\gamma$  Isolation

Data Analysis Event Selection Kinematic Distributions Signal Yield

Cross Sections Calculation

Conclusion

Backur

# Fragmentation Photon Contribution

Photons from fragmentation of jets produced in association with a W or a Z boson  $(W(Z)+{\rm jet}\ {\rm events})$ 

- Only the sum of the prompt and fragmentation components is physically well defined ⇒ Part of the signal
- Strongly suppressed by the photon identification and isolation requirements, but still significantly contributing
- Because of collinear divergences the measurements are restricted to events with  $\Sigma E_T^{had} < 0.5 \cdot E_T^{\gamma}$





ATLAS Detector

Data Analysis Event Selection Kinematic

Cross Sections Calculation

Conclusion

Backup

# Fragmentation Photon Contribution

Photons from fragmentation of jets produced in association with a W or a Z boson  $(W(Z)+{\rm jet}\ {\rm events})$ 

- Only the sum of the prompt and fragmentation components is physically well defined ⇒ Part of the signal
- Strongly suppressed by the photon identification and isolation requirements, but still significantly contributing
- Because of collinear divergences the measurements are restricted to events with  $\Sigma E_T^{had} < 0.5 \cdot E_T^\gamma$
- Experimentally challenging because of large uncertainties in estimating its contribution in data, and because of a very different identification efficiency w.r.t. "prompt" photons





### **ATLAS** Detector

# A Toroida L LHC Apparatu S





ATLAS

### Detector e and $\gamma$ II

 $\gamma$  Isolatio

Data Analysis
Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections

Calculation Results

Conclusion

Backup

### The Inner Detector

### Pixel Tracker

3 Barrel,  $2\times3$  Endcap Layers Resolution:  $10\mu m~(R\phi)$ 60M Channels

### SCT Tracker

4 Barrel,  $2\times 8$  Endcap Layers Double Stereo Sides Resolution:  $17\mu m~(R\phi)$ 6.3M Channels

### TRT Tracker

73,  $2 \times 160$  Layers **About 30 hits/track** Resolution:  $130 \mu m (R\phi)$  **PID Capability**  $\sim 0.3 M$  Channels



Silicon Pixel, Silicon Strips, Transition Radiation Detectors

Coverage:  $|\eta| <$  2.5 in 2T B-field

 $\sigma/p_T^2 (GeV) \sim 3.8 \cdot 10^{-4} \oplus 0.015$ 



ATLAS Detector

e and  $\gamma$  I

Data Analysis
Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backup

### The Inner Detector

### Pixel Tracker

3 Barrel,  $2\times3$  Endcap Layers Resolution:  $10\mu m~(R\phi)$ 60M Channels

### SCT Tracker

4 Barrel, 2×8 Endcap Layers Double Stereo Sides Resolution:  $17\mu m (R\phi)$ 6.3M Channels

### TRT Tracker

73,  $2 \times 160$  Layers About 30 hits/track Resolution:  $130 \mu m \ (R\phi)$  PID Capability  $\sim 0.3 M$  Channels

# $e/\pi$ Separation in TRT

Transition radiation depending on the charge particle Lorentz factor  $\gamma$ 







**ATLAS** 

Detector

 $\gamma$  Isolation

Data Analysis
Event Selection
Kinematic

Distributions
Signal Yield

Sections Calculation

Conclusion

Backup

# The Electromagnetic Calorimeter

Liquid Argon and Lead with accordion geometry Coverage:  $|\eta| < 3.2$  (with forward ECAL  $|\eta| < 4.9$ ) Three longitudinal samplings (plus a thin pre-sampler for  $|\eta| < 1.8$ )  $\Delta E/E \sim 10\%/\sqrt{E(GeV)}$ 





### ATLAS Detector

e and  $\gamma$  I

Data Analysis

Event Selection
Kinematic
Distributions
Signal Yield

Cross

Calculation Results

Conclusion

Backur

# The Electromagnetic Calorimeter

Liquid Argon and Lead with accordion geometry Coverage:  $|\eta| < 3.2$  (with forward ECAL  $|\eta| < 4.9$ )

Three longitudinal samplings (plus a thin pre-sampler for  $|\eta|<$  1.8)  $\Delta E/E\sim 10\%/\sqrt{E(GeV)}$ 

### **EM** Granularity

Longitudinal segmentation for maximum background rejection



Second layer collect most of the EM shower energy (cell  $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$ )
First (strip) later with high granularity (event-by-event  $\pi^0/\gamma$  discrimination)
Third layer for tails of very high EM shower Pre-sampler for energy loss corrections

 $\pi^0/\gamma$  Discrimination

Single Photon



 $\pi^0$  Candidate



Signal Definition

ATLAS

e and  $\gamma$  ID

Data Analysis
Event Selection

Kinematic Distributions Signal Yield

Cross Sections

Results

# Electron and Photon Identification

EM object identification algorithm fully exploits the longitudinal segmentation of the EM calorimeter, the tracking information and the TRT particle identification capability.



ATLAS Detector

e and  $\gamma$  ID  $\gamma$  Isolation

Data Analysi
Event Selectio
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backup

### Electron and Photon Identification

EM object identification algorithm fully exploits the longitudinal segmentation of the EM calorimeter, the tracking information and the TRT particle identification capability.

### Identification Discriminants

- Hadronic energy leakage
- Middle layer energy and lateral width  $(R_{\phi}, R_{\eta})$
- Strip layer lateral shower
- Strip layer first and second maximum energy ratio
- Track quality
- Track/Calorimeter matching
- First pixel layer hit
- $\bullet$  E/p ratio
- Transition radiation probability

# Three (Two) baseline set of identification cuts for electrons (photons)

Optimized in  $E_T$  and  $\eta$  binning for uniform efficiency. For photons optimized separately for converted and unconverted photons



Detector

 $\gamma$  Isolation

Data Analysi
Event Selectio
Kinematic
Distributions
Signal Yield

Cross Sections Calculation

Conclusion

Backun

### Electron and Photon Identification

EM object identification algorithm fully exploits the longitudinal segmentation of the EM calorimeter, the tracking information and the TRT particle identification capability.

### Identification Discriminants

- Hadronic energy leakage
- Middle layer energy and lateral width  $(R_{\phi}, R_{\eta})$
- Strip layer lateral shower
- Strip layer first and second maximum energy ratio
- Track quality
- Track/Calorimeter matching
- First pixel layer hit
- $\bullet$  E/p ratio
- Transition radiation probability

# Three (Two) baseline set of identification cuts for electrons (photons)

Optimized in  $E_T$  and  $\eta$  binning for uniform efficiency. For photons optimized separately for converted and unconverted photons

### e: EM Fraction in Layer 1



### e: EM Fraction in Layer 2





Detector

e and  $\gamma$  ID  $\gamma$  Isolation

Data Analysi Event Selectio Kinematic Distributions Signal Yield

Cross Sections Calculation

Conclusion

Backun

### Electron and Photon Identification

EM object identification algorithm fully exploits the longitudinal segmentation of the EM calorimeter, the tracking information and the TRT particle identification capability.

### Identification Discriminants

- Hadronic energy leakage
- Middle layer energy and lateral width  $(R_{\phi}, R_{\eta})$
- Strip layer lateral shower
- Strip layer first and second maximum energy ratio
- Track quality
- Track/Calorimeter matching
- First pixel layer hit
- $\bullet$  E/p ratio
- Transition radiation probability

# Three (Two) baseline set of identification cuts for electrons (photons)

Optimized in  $E_T$  and  $\eta$  binning for uniform efficiency. For photons optimized separately for converted and unconverted photons

### $\gamma$ unconverted: $R_{\phi}$



### $\gamma$ converted: $R_{\phi}$





Detector

e and  $\gamma$  ID  $\gamma$  Isolation

Data Analysis
Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backur

# Photon Energy Isolation

- $\bullet \ \ \, \text{Transverse energy in a cone with } R = 0.4 \\ \text{around the photon}$
- Taken as a sum of uncalibrated cell energy
- Central core  $5 \times 7$  not included
- Corrections for out-of-core leakage
- In principle sensitive to underlying event and pileup....





Detector

 $\gamma$  Isolation

Event Selection Kinematic Distributions Signal Yield

Cross Sections Calculation

Conclusion

Backur

# Photon Energy Isolation

- Transverse energy in a cone with R=0.4 around the photon
- Taken as a sum of uncalibrated cell energy
- Central core  $5 \times 7$  not included
- Corrections for out-of-core leakage
- In principle sensitive to underlying event and pileup....



 "Ambient" energy density measured by looking at underlying event in additional cones in the same event (method proposed by Cacciari, Salam, Sapeta, and Soyez)

http://arxiv.org/abs/0912.4926



ATLAS

e and  $\gamma$  ID  $\gamma$  Isolation

Data Analysis
Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections Calculation

Conclusion

Backur

### Photon Energy Isolation

- Transverse energy in a cone with R=0.4 around the photon
- Taken as a sum of uncalibrated cell energy
- Central core  $5 \times 7$  not included
- Corrections for out-of-core leakage
- In principle sensitive to underlying event and pileup....



 "Ambient" energy density measured by looking at underlying event in additional cones in the same event (method proposed by Cacciari, Salam, Sapeta, and Soyez)

http://arxiv.org/abs/0912.4926

 Photon energy isolation different for direct photons and photon from fragmentation





### ATLAS Detector

e and  $\gamma$ 

Data Analysi

Event Selection Kinematic Distributions

Cross Sections

Calculation Results

Conclusion

Backup

### **Event Selection**

### Require an high $E_T$ photon on W(Z) candidate events

### W Selection

- $\begin{tabular}{ll} \bullet & \mbox{One lepton with } E_T > 20 \\ \mbox{GeV} \end{tabular}$
- $|\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $E_T^{miss} > 25 \text{ GeV}$
- $\bullet$   $m_T^W >$  40 GeV
- Veto on a second lepton



### Detector

e and  $\gamma$  II

Data Analysis

Event Selection Kinematic Distributions

Cross Sections

Conclusion

Backur

### **Event Selection**

### Require an high $E_T$ photon on W(Z) candidate events

### W Selection

- $\bullet \ \, \text{One lepton with} \,\, E_T > 20 \\ \text{GeV}$
- $|\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $E_T^{miss} > 25 \text{ GeV}$
- $\bullet$   $m_T^W >$  40 GeV
- Veto on a second lepton

### **Z** Selection

- Two leptons with  $E_T > 20$  GeV
- $\bullet \ |\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $M_{ll} > 40 \; {\sf GeV}$



### Detector

e and  $\gamma$  I $\gamma$  Isolatio

Data Analysis

Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections Calculation

Conclusion

Backup

### **Event Selection**

### Require an high $E_T$ photon on W(Z) candidate events

### W Selection

- $\bullet \ \, \text{One lepton with} \,\, E_T > 20 \\ \text{GeV}$
- $|\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $E_T^{miss} > 25 \text{ GeV}$
- $\bullet$   $m_T^W >$  40 GeV
- Veto on a second lepton

### **Z** Selection

- Two leptons with  $E_T > 20$  GeV
- $|\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $\bullet$   $M_{ll} >$  40 GeV

### Photon Selection

- One photon with  $E_T > 15$ GeV and  $|\eta| < 2.37$
- $\Delta R(l, \gamma) > 0.7$
- $\begin{tabular}{ll} \bullet & \mbox{Isolation Energy } E_T^{iso} < {\bf 5} \\ \mbox{GeV} \end{tabular}$



### Detecto

e and  $\gamma$ 

Data Analysi

Event Selection Kinematic Distributions

Cross Sections Calculatio

Conclusion

Backup

### **Event Selection**

### Require an high $E_T$ photon on W(Z) candidate events

### W Selection

- $\begin{tabular}{ll} \bullet & \mbox{One lepton with } E_T > 20 \\ \mbox{GeV} \end{tabular}$
- $\bullet$   $|\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $E_T^{miss} > 25 \text{ GeV}$
- $\bullet$   $m_T^W >$  40 GeV
- Veto on a second lepton

### Photon Selection

- One photon with  $E_T > 15$  GeV and  $|\eta| < 2.37$
- $\Delta R(l, \gamma) > 0.7$
- $\begin{tabular}{ll} \bullet & \mbox{Isolation Energy } E_T^{iso} < {\bf 5} \\ \mbox{GeV} \end{tabular}$

### **Z** Selection

- Two leptons with  $E_T > 20$  GeV
- $|\eta| < 2.47$  (e) or  $|\eta| < 2.4$  ( $\mu$ )
- $\bullet$   $M_{ll} >$  40 GeV

# Number of Candidates in 35 pb<sup>-1</sup>

$$W\gamma$$
: 192

95 
$$(e\nu\gamma)$$
 + 97  $(\mu\nu\gamma)$ 

$$Z\gamma$$
: 48

25 
$$(e^{+-}\gamma)$$
 + 23  $(\mu^{+}\mu^{-}\gamma)$ 



ATLAS

Detecto

e and  $\gamma$ 

Event Selecti Kinematic Distributions

Cross

Sections Calculation

Conclusion

Backur

### Candidate Event Kinematic Distributions





### **ATLAS**

Detecto

e and  $\gamma$ 

Data Analys
Event Selecti
Kinematic
Distributions

Signal Y

Sections Calculation

Conclusion

Backur

### Candidate Event Kinematic Distributions







### ATLAS

- e and ~
- e and  $\gamma$
- Data Analys

  Event Selection

  Kinematic

  Distributions

### Cross

Sections Calculation

Conclusio

Backur

### Candidate Event Kinematic Distributions







ATLAS

Detector

e and  $\gamma$  I $\gamma$  Isolatio

Data Analys

Event Selection

Kinematic

Distributions

Distributions Signal Yield

Sections Calculatio

Conclusion

Backup

#### Candidate Event Kinematic Distributions







#### ATLAS

- e and  $\gamma$
- $\gamma$  Isolatio
- Data Analys Event Selecti Kinematic Distributions

#### Cross

Sections Calculation

Conclusion

Backur

#### Candidate Event Kinematic Distributions





ATLAS

Detector

e and  $\gamma$  I $\gamma$  Isolatio

Data Analys
Event Selection
Kinematic
Distributions

Cross

Sections Calculatio

Conclusio

Backur

#### Candidate Event Kinematic Distributions





ATLAS

e and  $\gamma$  I

Data Anal

Kinematic Distributions Signal Yield

Cross Sections

Conclusion

Backup

## Signal Yield Extraction

A 2D-sideband method is used to extract the signal yield directly from  $W\gamma$  and  $Z\gamma$  candidate events Discriminating Variable: Isolation Energy

#### Isolation Energy Distributions







ATLAS

e and  $\gamma$  I

Data Analysi
Event Selectio

Kinematic Distributions Signal Yield

Cross Section

Calculation Results

Conclusion

Backup

## Signal Yield Extraction

A 2D-sideband method is used to extract the signal yield directly from  $W\gamma$  and  $Z\gamma$  candidate events Discriminating Variable: **Isolation Energy** 

#### Isolation Energy Distributions





Isolation background shape from data.

Normalization from the tail of the isolation distribution.



Introductio Signal Definition

ATLAS

e and  $\gamma$  l

Data Analysi
Event Selectio
Kinematic
Distributions
Signal Yield

Cross Sections Calculation

Conclusion

Backup

## Signal Yield Extraction

# To model the background isolation energy distribution: reverse some photon ID cuts

- Photons are required to pass the ID cuts <u>except</u> the strip layers variables
- Assuming no/little correlation between photon ID variables and isolation
  - Strip variables fairly uncorrelated with isolation energy



ATLAS Detector

Data Anal
Event Selec

Event Selection Kinematic Distributions Signal Yield

Cross Sections Calculation

Conclusion

Backur

## Signal Yield Extraction

# To model the background isolation energy distribution: reverse some photon ID cuts

- Photons are required to pass the ID cuts  $\underline{\text{except}}$  the strip layers variables
- Assuming no/little correlation between photon ID variables and isolation
  - Strip variables fairly uncorrelated with isolation energy

# Method applied only to the $W\gamma$ analysis (very limited statistics on $Z\gamma$ )

- Corrections for signal presence in control region applied
- Contributions from other processes ( $W \to \tau \nu$ ,  $t\bar{t}$ ,  $Z \to ee$ , etc..) estimated from MC.
- Systematics due to the assumptions of the method and the definition of the control regions carefully estimated.



Introduction
Signal
Definition

Detector

 $\gamma$  Isolation

Event Selecti Kinematic Distributions Signal Yield

Cross Sections Calculatio

Conclusion

Backup

## Signal Yield Extraction

# To model the background isolation energy distribution: reverse some photon ID cuts

- Photons are required to pass the ID cuts <u>except</u> the strip layers variables
- Assuming no/little correlation between photon ID variables and isolation
  - Strip variables fairly uncorrelated with isolation energy

#### Results: signal purity in selected events $\sim 80\%$

| Process                           | Observed events | non $W$ +jets background $W$ +jet background |                        | Extracted Signal       |
|-----------------------------------|-----------------|----------------------------------------------|------------------------|------------------------|
| $pp \rightarrow e \nu \gamma$     | 95              | $10.1\pm0.8\pm1.2$                           | $16.9 \pm 6.4 \pm 7.3$ | $67.9 \pm 9.5 \pm 7.3$ |
| $pp \rightarrow \mu \nu \gamma$   | 97              | $12.4 \pm 0.9 \pm 1.4$                       | $16.8 \pm 4.7 \pm 7.3$ | $67.8 \pm 9.3 \pm 7.4$ |
| Process                           | Observed events | Total Background $3.8 \pm 3.8$ $3.4 \pm 3.4$ |                        | Extracted Signal       |
| $pp \rightarrow e^+e^-\gamma$     | 25              |                                              |                        | $21.2 \pm 5.8 \pm 3.8$ |
| $pp \rightarrow \mu^+\mu^-\gamma$ | 23              |                                              |                        | $19.6 \pm 4.8 \pm 3.4$ |
|                                   |                 |                                              |                        |                        |



Signal Definit

ATLAS

e and  $\gamma$ 

 $\gamma$  isolation

Event Selection Kinematic Distributions

Cross Sections

Calculation Results

Conclusion

Backup

#### Cross Section Calculation

$$\sigma_{pp \to l\nu\gamma(l^+l^-\gamma)} = \frac{N_{W\gamma(Z\gamma)}^{sig}}{C_{W\gamma(Z\gamma)} \cdot L_{W\gamma(Z\gamma)} \cdot A_{W\gamma(Z\gamma)}}$$

- $lackbox{ } N^{sig}$  is the number of the extracted signal events
- lacktriangledown L is the the integrated luminosity
- C summarizes the reconstruction and identification efficiency
- lacktriangledown A is the acceptance of the "total" cross section



Detector

e and  $\gamma$  I

Data Analysi Event Selectio Kinematic Distributions

Sections Calculation

Conclusion

Backup

#### **Cross Section Calculation**

$$\sigma_{pp \to l\nu\gamma(l^+l^-\gamma)} = \frac{N_{W\gamma(Z\gamma)}^{sig}}{C_{W\gamma(Z\gamma)} \cdot L_{W\gamma(Z\gamma)} \cdot A_{W\gamma(Z\gamma)}}$$

- lacktriangledown  $N^{sig}$  is the number of the extracted signal events
- lacktriangledown L is the the integrated luminosity
- ullet C summarizes the reconstruction and identification efficiency
- ullet A is the acceptance of the "total" cross section

#### Cross section measured in two phase-space regions:

Fiducial Phase-space where the measurement has been performed (defined by the cuts reported earlier in the "selection slide")

Total Phase-space extended to regions outside experimental acceptance:

**fiducial** → **total** extrapolation done with Monte Carlo "Total" phase-space definition:

$$E_T^{\gamma} > 10~GeV,~~\Delta R(l,\gamma) > 0.5,~~\Sigma E_T^{had} < 0.5 \cdot E_T^{\gamma}$$



Signal

#### ATLAS

- e and  $\gamma$   $\Pi$
- $\gamma$  Isolation

#### Data Analysis

Kinematic Distributions Signal Yield

#### Cross

Calculation

Conclusion

Backup

## Efficiency Values and Uncertainties

 $C_{W\gamma}$  (e channel) = 36%  $C_{W\gamma}$  ( $\mu$  channel) = 46%



Definitio

e and  $\gamma$ 

 $\gamma$  Isolation

Data Analysis
Event Selection
Kinematic
Distributions

Signal Yiel

Calculation

Conclusion

Backup

## Efficiency Values and Uncertainties

$$C_{W\gamma}$$
 (e channel) = 36%  $C_{W\gamma}$  ( $\mu$  channel) = 46%  $C_{Z\gamma}$  (e channel) = 29%  $C_{Z\gamma}$  ( $\mu$  channel) = 43%



ATLAS

e and  $\gamma$  I

Data Analy

Event Selectio Kinematic Distributions Signal Yield

Cross Sections

Calculation Results

Conclusion

Backur

## Efficiency Values and Uncertainties

 $C_{W\gamma}$  (e channel) = 36%  $C_{W\gamma}$  ( $\mu$  channel) = 46%  $C_{Z\gamma}$  (e channel) = 29%  $C_{Z\gamma}$  ( $\mu$  channel) = 43%

#### **Efficiency Uncertainties**

| Composition                                         | $\delta C_{W\gamma}/C_{W\gamma}$ | $\delta C_{Z\gamma}/C_{Z\gamma}$ | $\delta C_{W\gamma}/C_{W\gamma}$ | $\delta C_{Z\gamma}/C_{Z\gamma}$ |
|-----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                     | evγ                              | $e^+e^-\gamma$                   | μνγ                              | $\mu^+\mu^-\gamma$               |
| Trigger efficiency                                  | 1%                               | 0.02%                            | 0.6%                             | 0.2%                             |
| lepton reconstruction and identification efficiency | 4.5%                             | 5%                               | 0.5%                             | 1%                               |
| muon isolation efficiency                           | -                                | -                                | 1%                               | 2%                               |
| photon reconstruction and identification efficiency | 11.5%                            | 11.5%                            | 11.5%                            | 11.5%                            |
| EM Energy scale and resolution                      | 3%                               | 4.5%                             | 4%                               | 3%                               |
| Momentum scale and resolution                       | -                                | -                                | 0.3%                             | 0.5%                             |
| $E_T^{miss}$ scale and resolution                   | 2%                               | -                                | 2%                               | -                                |
| Problematic regions in the calorimeter              | 1.4%                             | 2.1%                             | 0.7%                             | 0.7%                             |
| FSR modelling                                       | 0.3%                             | 0.3%                             | 0.3%                             | 0.3%                             |
| photon isolation cut efficiency                     | 6%                               | 6%                               | 6%                               | 6%                               |
| Total uncertainty                                   | 14.3%                            | 14.6%                            | 13.8%                            | 13.5%                            |

#### Main contributions to the total uncertainty are:

- Fragmentation photon contribution in data (6% for both photon ID and isolation efficiency)
- ullet Amount of material knowledge (particualry at high  $|\eta|$ )
- Data/MC discrepancies for the EM shower shape distributions



Definitio

ATLAS

e and  $\gamma$ 

 $\gamma$  Isolatio

Event Selection

Kinematic Distributions Signal Yield

Sections

Calculati Results

Conclusion

Backup

# Cross Section Measurements and Comparison with Standard Model Theory

Fiducial Cross Sections

|                                 | $\sigma^{fid}[pb]$ (measured)                   | $\sigma^{fid}[pb]$ (predicted) |
|---------------------------------|-------------------------------------------------|--------------------------------|
| $pp \rightarrow e \nu \gamma$   | $5.1 \pm 0.7(stat) \pm 0.9(syst) \pm 0.6(lumi)$ | $4.6 \pm 0.3 (\text{syst})$    |
| $pp \rightarrow \mu \nu \gamma$ | $4.2 \pm 0.6(stat) \pm 0.7(syst) \pm 0.5(lumi)$ | $4.9 \pm 0.3 (\text{syst})$    |
| $pp 	o e^+e^-\gamma$            | $2.0 \pm 0.6(stat) \pm 0.5(syst) \pm 0.2(lumi)$ | $1.7 \pm 0.1 (syst)$           |
| $pp 	o \mu^+ \mu^- \gamma$      | $1.3 \pm 0.3(stat) \pm 0.3(syst) \pm 0.1(lumi)$ | $1.7 \pm 0.1 (syst)$           |
|                                 | •                                               |                                |



ATLAS

Detector

e and  $\gamma$  I  $\gamma$  Isolation

Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusion

Backur

# Cross Section Measurements and Comparison with Standard Model Theory

Fiducial Cross Sections

|                                   | _                                               |                                |
|-----------------------------------|-------------------------------------------------|--------------------------------|
|                                   | $\sigma^{fid}[pb]$ (measured)                   | $\sigma^{fid}[pb]$ (predicted) |
| $pp \rightarrow e \nu \gamma$     | $5.1 \pm 0.7(stat) \pm 0.9(syst) \pm 0.6(lumi)$ | $4.6 \pm 0.3 (\text{syst})$    |
| $pp 	o \mu \nu \gamma$            | $4.2 \pm 0.6(stat) \pm 0.7(syst) \pm 0.5(lumi)$ | $4.9 \pm 0.3 (\text{syst})$    |
| $pp \rightarrow e^+e^-\gamma$     | $2.0 \pm 0.6(stat) \pm 0.5(syst) \pm 0.2(lumi)$ | $1.7 \pm 0.1 (syst)$           |
| $pp \rightarrow \mu^+\mu^-\gamma$ | $1.3 \pm 0.3(stat) \pm 0.3(syst) \pm 0.1(lumi)$ | $1.7 \pm 0.1 (syst)$           |
|                                   |                                                 |                                |

**Total Cross Sections** 

| Total Closs Sections            |                                                    |                                  |  |
|---------------------------------|----------------------------------------------------|----------------------------------|--|
|                                 | $\sigma^{total}[pb]$ (measured)                    | $\sigma^{total}[pb]$ (predicted) |  |
| $pp \rightarrow e v \gamma$     | $73.9 \pm 10.5(stat) \pm 14.6(syst) \pm 8.1(lumi)$ | $69.0 \pm 4.6 (\text{syst})$     |  |
| $pp \rightarrow \mu \nu \gamma$ | $58.6 \pm 8.2(stat) \pm 11.3(syst) \pm 6.4(lumi)$  | $69.0 \pm 4.6 (\text{syst})$     |  |
| $pp 	o e^+e^-\gamma$            | $16.4 \pm 4.5(stat) \pm 4.3(syst) \pm 1.8(lumi)$   | $13.8 \pm 0.9 (\text{syst})$     |  |
| $pp 	o \mu^+ \mu^- \gamma$      | $10.6 \pm 2.6(stat) \pm 2.5(syst) \pm 1.2(lumi)$   | $13.8 \pm 0.9 (\text{syst})$     |  |

All cross section measurements are consistent within their uncertainties with the Standard Model expectations



ATLAS

e and  $\gamma$  I

Data Analys
Event Selection
Kinematic
Distributions

Cross Sections Calculatio

Conclusions

Rackun

## Conclusions and Future Prospects

First measurement of  $W\gamma$  and  $Z\gamma$  production cross sections at  $\sqrt{s}=$  7 TeV performed by ATLAS using  $\sim$  35 pb $^{-1}$  of integrated luminosity

Experimental measurements are in agreement with Standard Model expectations within error

With more data available this year the Triple Gauge Couplings will be probed with unprecedented precision

Searches will be extended also to  $W\gamma$  and  $Z\gamma$  resonance decay of particles beyond Standard Model



ATLAS

e and  $\gamma$  I

Data Analys
Event Selectic
Kinematic
Distributions

Cross Sections Calculation

Conclusions

Rackun

## Conclusions and Future Prospects

First measurement of  $W\gamma$  and  $Z\gamma$  production cross sections at  $\sqrt{s}=$  7 TeV performed by ATLAS using  $\sim$  35 pb $^{-1}$  of integrated luminosity

Experimental measurements are in agreement with Standard Model expectations within error

With more data available this year the Triple Gauge Couplings will be probed with unprecedented precision

Searches will be extended also to  $W\gamma$  and  $Z\gamma$  resonance decay of particles beyond Standard Model



Detector

e and  $\gamma$  I  $\gamma$  Isolatio

Event Selection
Kinematic
Distributions

Cross Sections Calculation

Conclusions

Backup

## Conclusions and Future Prospects

First measurement of  $W\gamma$  and  $Z\gamma$  production cross sections at  $\sqrt{s}=$  7 TeV performed by ATLAS using  $\sim$  35 pb $^{-1}$  of integrated luminosity

Experimental measurements are in agreement with Standard Model expectations within error

With more data available this year the Triple Gauge Couplings will be probed with unprecedented precision

Searches will be extended also to  $W\gamma$  and  $Z\gamma$  resonance decay of particles beyond Standard Model



Detector

e and  $\gamma$  II  $\gamma$  Isolation

Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections Calculation

Conclusions

Backur

## Conclusions and Future Prospects

First measurement of  $W\gamma$  and  $Z\gamma$  production cross sections at  $\sqrt{s}=$  7 TeV performed by ATLAS using  $\sim$  35 pb $^{-1}$  of integrated luminosity

Experimental measurements are in agreement with Standard Model expectations within error

With more data available this year the Triple Gauge Couplings will be probed with unprecedented precision

Searches will be extended also to  $W\gamma$  and  $Z\gamma$  resonance decay of particles beyond Standard Model



Detector

e and  $\gamma$  II  $\gamma$  Isolation

Event Selectio Kinematic Distributions Signal Yield

Cross Sections Calculation

Conclusions

Backur

## Conclusions and Future Prospects

First measurement of  $W\gamma$  and  $Z\gamma$  production cross sections at  $\sqrt{s}=$  7 TeV performed by ATLAS using  $\sim$  35 pb $^{-1}$  of integrated luminosity

Experimental measurements are in agreement with Standard Model expectations within error

With more data available this year the Triple Gauge Couplings will be probed with unprecedented precision

Searches will be extended also to  $W\gamma$  and  $Z\gamma$  resonance decay of particles beyond Standard Model



Signal

#### Deminio

#### Detector

- e and  $\gamma$  II
- Data Analysis

#### Data Analysis

Event Selection Kinematic Distributions

#### Cross

Sections

Calculation

Conclusions

Backup

## Backup



ATLAS

e and  $\gamma$  II

Data Analysi
Event Selectio

Event Selection
Kinematic
Distributions
Signal Yield

Cross
Sections
Calculatio

Conclusio

Backup

## Signal Yield Extraction

 Assuming no/little correlation between photon ID variables and isolation:

$$\frac{N_D}{N_B} = \frac{N_C}{N_A}$$

for background events

 With small signal contamination in the control regions,

 $N_B,\,N_C,\,{\rm and}\,\,N_D$  from data  $\Rightarrow$  amount of background in  $N_A$ 

| uality                                 | (Isolated)           | (Not Isolated)            |
|----------------------------------------|----------------------|---------------------------|
| "Low Quality" Photon<br>Identification | C (Control Region)   | D<br>(Control Region)     |
| Standard Photon<br>Identification      | A<br>(Signal Region) | <b>B</b> (Control Region) |
| 8 .                                    | 5 (                  | Isolation Energy [Ge      |



ATLAS

e and  $\gamma$  I

Data Analysi Event Selectio Kinematic

Cross Sections Calculation

Conclusion

Backup

#### Signal Yield Extraction

 Assuming no/little correlation between photon ID variables and isolation:

$$\frac{N_D}{N_B} = \frac{N_C}{N_A}$$

for background events

 With small signal contamination in the control regions,

 $N_B$ ,  $N_C$ , and  $N_D$  from data  $\Rightarrow$  amount of background in  $N_A$ 



#### Method applied only to the $W\gamma$ analysis (very limited statistics on $Z\gamma$ )

- Corrections for signal presence in control region applied
- Systematics due to the assumptions of the method and the definition of the control regions carefully estimated.



ATLAS

e and  $\gamma$  I

 $\gamma$  Isolation

Data Analysis
Event Selection
Kinematic
Distributions
Signal Yield

Cross Sections Calculation

Conclusion

Backup

#### Signal Yield Extraction

 Assuming no/little correlation between photon ID variables and isolation:

$$\frac{N_D}{N_B} = \frac{N_C}{N_A}$$

for background events

 With small signal contamination in the control regions,

 $N_B$ ,  $N_C$ , and  $N_D$  from data  $\Rightarrow$  amount of background in  $N_A$ 



| Process                           | Observed events | non $W$ +jets background                     | W+jet background       | Extracted Signal       |
|-----------------------------------|-----------------|----------------------------------------------|------------------------|------------------------|
| $pp \rightarrow e \nu \gamma$     | 95              | $10.1\pm0.8\pm1.2$ $16.9\pm6.4\pm7.3$        |                        | $67.9 \pm 9.5 \pm 7.3$ |
| $pp \rightarrow \mu \nu \gamma$   | 97              | $12.4 \pm 0.9 \pm 1.4$                       | $16.8 \pm 4.7 \pm 7.3$ | $67.8 \pm 9.3 \pm 7.4$ |
| Process                           | Observed events | Total Background $3.8 \pm 3.8$ $3.4 \pm 3.4$ |                        | Extracted Signal       |
| $pp \rightarrow e^+e^-\gamma$     | 25              |                                              |                        | $21.2 \pm 5.8 \pm 3.8$ |
| $pp \rightarrow \mu^+\mu^-\gamma$ | 23              |                                              |                        | $19.6 \pm 4.8 \pm 3.4$ |